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Introduction. Here I explore an interrelated set of mathematical questions that
arise whenever one looks (as I recently have been doing) to the quantum theory
of composite systems, at least when the quantum states can be assumed to live
in finite-dimensional Hilbert spaces. To pose the questions I have in mind I
look to some simple examples.

Let

a =
(

a1

a2

)
, b =




b1

b2

b3



 , c =
(

c1

c2

)

Then

a ⊗ b =





a1b1

a1b2

a1b3

a2b1

a2b2

a2b3




, b ⊗ a =





b1a1

b1a2

b2a1

b2a2

b3a1

b3a2





We note in passing that if a and b are unit vectors a+ a = b+ b = 1 then so
also are their tensor products: (a ⊗ b)+(a ⊗ b) = (a+ a)⊗ (b+ b) = 1⊗ 1 = 1.1

Our root problem is a decision problem, which in the simplest instance can
be posed: Given a 6-vector

Φ =





φ1

φ2

φ3

φ4

φ5

φ6





do there exist vectors a and b such that

Φ = a ⊗ b else b ⊗ a

In short, is Φ “separable,” or is it “non-separable”? Suppose Φ (normalized)
refers to the state of a composite system SAB = SA ⊗ SB . In that context the
question becomes: Are the states of SA and SB “disentangled” or “entangled”?

1 I have made use here of properties of the tensor (Kronecker) product which
are listed on page 24 of Chapter 1 in Advanced Quantum Topics (2000).
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In the latter case, what does one mean by “the state of SA (or SB)”? Here
the density matrix and partial trace concepts come indispensably into play, and
Dirac notation becomes the natural language. The pure state density operators

ρA = |a)(a|
ρB = |b)(b|

are clearly projective (ρAρA = ρA, ρBρB = ρB) and have unit trace2

tr ρA =
∑

i

(ei|a)(a|ei) =
∑

i

(a|ei)(ei|a) = (a|a) = 1

and the same can be said of ρΦ = |Φ)(Φ|. In separable cases we have

ρΦ = |Φ)(Φ| =
[
|a) ⊗ |b)

][
(a|⊗ (b|

]

=
[
|a)(a|

]
⊗

[
|b)(b|

]

= ρA ⊗ ρB (1.1)
tr ρΦ = tr ρA · tr ρB (1.2)

But what can be said—more specifically, what becomes of (1)—when Φ is not
separable? It is here that the partial trace comes into play.

In 6 = 2 · 3 = 3 · 2 dimensions, four distinct partial trace operations are
available:3

tr2(3)X =
2∑

i=1

[
(ei|⊗ I3

]
X

[
|ei) ⊗ I3

]
: trace out leading 2 × 2 component

tr(2)3X =
3∑

j=1

[
I2 ⊗ (fj |

]
X

[
I2 ⊗ |fj)

]
: trace out trailing 3 × 3 component

tr(3)2X =
2∑

i=1

[
I3 ⊗ (ei|

]
X

[
I3 ⊗ |ei)

]
: trace out trailing 2 × 2 component

tr3(2)X =
3∑

j=1

[
(fj |⊗ I2

]
X

[
|fj) ⊗ I2

]
: trace out leading 3 × 3 component

The composite systems mosta commonly encountered in quantum theory (think
of the adventures of Alice and Bob, or of systems in interaction with their
environments) are bipartite, and factor order is arbitrarily preassigned. In such
contexts is simpler and more natural to write

trAX = tr2(3)X
trBX = tr(2)3X

and it is in that notation that I phrase most of the following remarks.

2 Here {|ei)} refers to some/any orthonormal basis in HA.
3 Here {|ei)} refers to some/any orthonormal basis in H2 and {|fj)} refers

to some/any orthonormal basis in H3.
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Introducing matrices

A =
(

a11 a12

a21 a22

)
and B =




b11 b12 b13

b21 b22 b23

b31 b32 b33





we have
trA(A ⊗ B) = (trA) B
trB(A ⊗ B) = (tr B) A

giving

tr[trA(A ⊗ B)] = tr[trB(A ⊗ B)] = (trA)(trB) = tr(A ⊗ B) (2)

and can recover C = A ⊗ B from its trace and partial traces:

A ⊗ B = trB(A ⊗ B) ⊗ trA(A ⊗ B)
tr(A ⊗ B)

= trB(A ⊗ B)√
tr(A ⊗ B)

⊗ trA(A ⊗ B)√
tr(A ⊗ B)

It becomes appropriate at this point to note that in two distinct respects
the separability problem is non-unique:

• If C is separable then so is kC, so (set k = 1/trC) one can without
loss of generality assume trC = 1.

• A ⊗ B = (kA) ⊗ (k–1B), so if C = A ⊗ B has unit trace one can
without loss of generality assume that A and B also have unit trace:

A = trB(A ⊗ B)
tr[trB(A ⊗ B)]

and B = trA(A ⊗ B)
tr[trA(A ⊗ B)]

Square matrices with unit traces4 will be said to be “trace-normalized” (or
simply “normalized” when the context precludes the possibility of confusion.)

For any 6 × 6 matric C one has5 (compare (1))

tr[trAC] = tr[trBC] = trC
= 1 if C is normalized

but one has5

C
trC = trBC

tr[trBC]
⊗ trAC

tr[trAC]
iff C is A ⊗ B separable (3)

4 But subject, however, to none of the other conditions (positive semi-definite
hermiticity) imposed upon density matrices.

5 Here as on some future occasions I allow myself to omit the formal
demonstration if Mathematica -based numerical experimentation has convinced
me of the validity of a claim.
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The matrix C = B ⊗ A is separable, but would fail the preceding test,
though it would pass an obvious variant of that test. Similarly, one would need
a suite of distinct partial trace tests to discover whether a 24 × 24 matrix Z is
separable in one or another of the following senses

A ⊗ B ⊗ C , C ⊗ B ⊗ A
B ⊗ C ⊗ A , A ⊗ C ⊗ B
C ⊗ A ⊗ B , B ⊗ A ⊗ C

(here A, B and C have been assumed to be respectively 2, 3, and 4-dimensional).
And still further testing would be required to discover whether Z, having passed
(say) the A ⊗ B ⊗ C test, possesses the still more highly composite structure

A ⊗ B ⊗ A ⊗ A

Preceding remarks exemplify a problem which we discuss now in more
general terms.

Howmany, andwhich? An n-vector (similarly, an n×n matrix) can be composite
or “separable” only if n is composite in the number theoretic sense (not prime):

n = pα1
1 pα2

2 pα3
3 · · · pαν

ν :
∑

iαi #= 1 (4)

We are interested in ennumerating the m-term factorizations of n. When I
mentioned my interest in this problem to Scott Corry, a former student who is
now a number theorist on the mathematics faculty at Lawrence University with
whom I was in correspondence about other matters, he promptly responded6

that I had ventured into an area known as “factorisatio numerorum,” and cited
several references.7 Quoting from the introduction to another paper8

The problems of “factorisatio numerorum,” which go back more
than 65 years, are concerned principally with (i) the total number
of factorizations of a natural number n > 1 into products of natural
numbers larger than 1, where the order of the factors is not counted,
and (ii) the corresponding total number F (n) when the order of the
factors is counted.

Effort in the field appears to have been directed mainly to developing asymptotic
upper and lower bounds on f(n) and F (n). My own need, however , is more
particular.

6 Private communication, 20 February 2013.
7 Among them E. R. Canfield, Paul Erdös & Carl Pomerance, “On a problem

of Oppenheim concerning ‘factorisatio numerorum’,” Journal of Number Theory
17, 1-28 (1983), which seems to be a classic in the field.

8 Arnold Knoppmacher, John Knoppmacher & R. Warlimot, “‘Factorisatio
numerorum’ in arithmetical semigroups,”Acta Mathematica 61, 327-336 (1992).
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Factorizations of the form

n = q1q2 · · · qm (5)

will be said to be “m-partite.” We might write

f(n, m) = total # of m-partite factorizations of n (order not counted)
F (n, m) = total # of m-partite factorizations of n (order counted)

but are in fact not so much interested in “how many” as “which.” We want to
be in position to list (at least for n not too large) the individual members of
the population of m-partite factorizations of n, both when order is not counted
and (especially) when order is counted.

Some of the factors in (5) may appear multiple times. Lumping repeated
factors together, we obtain

n = Qβ1
1 Qβ2

2 · · ·Qβk

k :
∑

j βj = m, all Qj distinct

Suppose, for example, that as an instance of (5) we had

n = abracadabra

= a5b2c1d1r2 if order is not counted

That 11-partite product (of which 25 ·32 ·41 ·51 ·62 = 207360 = 29 ·34 ·5 provides
an instance) admits of

11!
5!2!1!1!2!

≡
(

11
5, 2, 1, 1, 2

)
= 83160

distinct permutations, of which one is abracadabra. Evidently, if we possessed
a list of the m-partite factorizations of n (order not counted) we could by
permutation generate the corresponding list in which order does count. It is
clear that we can in typical cases expect to have expect to have

F (n, m) % f(n, m)

and why the production of asymptotic estimates is a challenging exercise.

A computational strategy. If, given n = pα1
1 pα2

2 pα3
3 · · · pαν

ν , our objective is
to construct an m-partite factorization n = q1q2 · · · qm we must partition the
exponents and distribute their parts among the q -factors, in such a way that
no factor is left empty-handed (all exponents 0), for such a factor would have
value 1 and the resulting factorization would not be m-partite. Writing

qk = pµk1
1 pµk2

2 pµk3
3 · · · pµkν

ν : k = 1, 2, . . . , m

our assignment is to ennumerate the solutions of
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µ11 + µ21 + · · · + µm1 = α1

µ12 + µ22 + · · · + µm2 = α2

...
µ1ν + µ2ν + · · · + µmν = αν






(6)

where the µs are drawn from N0 = {0, 1, 2, . . .}. Evidently, we can with every
distinct m-partite factorization of n = q1q2 · · · qm = pα1

1 pα2
2 pα3

3 · · · pαν
ν associate

a ν × m matrix

M =





µ11 µ21 . . . µm1

µ12 µ22 . . . µm2
...

...
...

µ1ν µ2ν . . . µmν



 : no column null

where the elements of the jth row comprise a partition of αj , while the elements
of the kth column are the prime exponents that enter into the construction of qm.

Mathematica is nicely equipped to assist in the calculations. Suppose we
had in mind an n of the form

n = p5
1p

2
2

of which the smallest instance is 25 · 32 = 288 (but the present argument looks
only to the exponents, and is insensitive to the prime values we assign to p1

and p2), and we interested in the tripartite factorizations q1q2q3 of n. There
are 7 partitions of 5

PartitionsP[5] = 7

and they are

IntegerPartitions[5] =
{
{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1},

{2, 1, 1, 1}, {1, 1, 1, 1, 1}
}

We seek a tripartite factorization, so have no interest in partitions into more
than three terms; those are obvious in this instance, but might have been
produced by these commands:

IntegerPartitions[5,{1}] = {5}
IntegerPartitions[5,{2}] = {4, 1}, {3, 2}
IntegerPartitions[5,{3}] = {3, 1, 1}, {2, 2, 1}

So we have these candidates
{5, 0, 0}
{4, 1, 0}
{3, 2, 0}
{3, 1, 1}
{2, 2, 1}
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for insertion into the top row of the 2 × 3 matrix M, and similarly find these
candidates

{2, 0, 0}
{1, 1, 0}

for insertion into the second row. We are in position therefore to consruct ten
M matrices

(
5 0 0
2 0 0

)
,

(
4 1 0
2 0 0

)
,

(
3 2 0
2 0 0

)
,

(
3 1 1
2 0 0

)
,

(
2 2 1
2 0 0

)

(
5 0 0
1 1 0

)
,

(
4 1 0
1 1 0

)
,

(
3 2 0
1 1 0

)
,

(
3 1 1
1 1 0

)
,

(
2 2 1
1 1 0

)





(7)

of which six have to be discarded because they present one or more null columns
and therefore fail to yield tripartite factorizations. Looking to the remaining
four, we have

M1 =
(

3 1 1
2 0 0

)
=⇒ p3

1p
2
2 · p1

1 · p1
1

M2 =
(

2 2 1
2 0 0

)
=⇒ p2

1p
2
2 · p2

1 · p1
1

M3 =
(

3 1 1
1 1 0

)
=⇒ p3

1p
1
2 · p1

1p
1
2 · p1

1

M4 =
(

2 2 1
1 1 0

)
=⇒ p2

1p
1
2 · p2

1p
1
2 · p1

1

This list of tripartite factorizations is, however, not complete, for the rows
have been presented in the descending lexicographic order in which they were
produced by Mathematica, and this is a convention extraneous to the problem
at hand. Look, for example to

M5 =
(

1 2 2
2 0 0

)
=⇒ p1

1p
2
2 · p2

1 · p2
1

which obtains from M2 by permutation of the top row. And a permutation of
the top row of a matrix that we initially were led to abandon sends

(
4 1 0
1 1 0

)
−→

(
4 0 1
1 1 0

)
=⇒ p4

1p
1
2 · p1

2 · p1
1

which is a tripartite factorization absent from the list accumulated thus far. It
appears we must expand the M-set (7) by subjecting each row to all distinct
permutations, then discard all matrices with one or more null columns, then
discard all duplicates. F (n, m) is the number of matrices that survive that
process. f(n, m) results when one filters out matrices with permutationally
equivalent columns. Mathematica can be used to implement the winnowing
processes described above, but I have found that to be a challenging exercise.
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Concluding remarks. In 1983 (the year that the Canfield/Erdös/Pomerance
paper7 appeared), J. F. Hughes & J. O. Shallit published a short paper entitled
“On the number of multiplicative partitions.”9 The Wikipedia “multiplicative
partitions” article states that Hughes & Shallit appear to be responsible for
the fact that the “factorissatio numerorum problem” has come to be called the
“multiplicative partitions problem” (sometimes the “unordered factorization
problem.”) We see that the new terminology could not be more apt, though it
seems a shame to abandon one of the last surviving Latinisms in mathematical
parlance.

When I first approached this problem I anticipated that it might yield to a
generating function technique, but came away empty handed (where are Euler
and Ramanujan when we need them?). Recently I came across a paper by
Shamik Ghosh10 the abstract of which reads

. . .we describe a new method of counting the number of unordered
factorizations of a natural number by means of a generating function
and a recurrence arising from it, which improves an earlier result
in this direction.

But Ghosh is—like most authors in this field—concerned with counting , while
I seek explicit lists of m-partite factorizations.

ADDENDA: Two exceptionally simple cases. Suppose n is a power of a prime:

n = pα

The multiplicative partitions problem reduces then to the problem of literally
partitioning α. Suppose, for example, that α = 6. Then

IntegerPartitions[6,{2}] =
{
{5, 1}, {4, 2}, {3, 3}

}

IntegerPartitions[6,{3}] =
{
{4, 1, 1}, {3, 2, 1}, {2, 2, 2}

}

IntegerPartitions[6,{4}] =
{
{3, 1, 1, 1}, {2, 2, 1, 1}

}

IntegerPartitions[6,{5}] = {2, 1, 1, 1, 1}

IntegerPartitions[6,{6}] = {1, 1, 1, 1, 1, 1}

from which unordered m-partite factorizations can be read off directly and
ordered factorizations obtained permutationally.

In quantum mechanical applications one is—as was remarked previously—
most commonly concerned with bipartite factorizations

n = q1q2 = pα1
1 pα2

2 pα3
3 · · · pαν

ν

9 American Mathematical Monthly 90, 468-471.
10 “Countingnumber of factorizations ofanatural number,”arXiv:0811.3479v1

(21 November 2008).
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The simplifying feature here is that the structure of q2 = n/q1 is implicit in
that of q1. The possible bipartite factorizations are

q1 = pµ1
1 pµ2

2 · · · pµν
ν

q2 = pα1−µ1
1 pα2−µ2

2 · · · pαν−µν
ν

where
µ1 ∈ {0, 1, 2, . . . , α1}
µ2 ∈ {0, 1, 2, . . . , α2}

...
µν ∈ {0, 1, 2, . . . , αν}

There are a total of (α1 + 1)(α2 + 1) · · · (αν + 1) such µ-assignments, of which
two (all µ minimal and all µ maximal) must be excluded because they produce
q1 = 1 else q2 = 1 and so violate the bipartite requirement. So we have

F (n, 2) = (α1 + 1)(α2 + 1) · · · (αν + 1) − 2
f(n, 2) = Ceiling[ 1

2F (n, 2)]

EXAMPLE: In cases of the form n = p2
1p

1
2 we have

q1 = [p0
1p

0
2], p0

1p
1
2, p1

1p
0
2, p1

1p
1
2, p2

1p
0
2, [p2

1p
1
2]

where the bracketed cases must be omitted. If n = 12 = 22 · 3 (the smallest
instance of such a case) we have the bipartite factorization list

12 = 3 · 4 = 2 · 6 = 6 · 2 = 4 · 3

which are
F (12, 2) = (2 + 1)(1 + 1) − 2 = 4

in number. If order doesn’t count we have

12 = 3 · 4 = 2 · 6

which are
f(12, 2) = Ceiling[ 1

2F (12, 2)] = 2

in number.

EXAMPLE: In cases of the form n = p2
1p

2
2 we have

q1 = [p0
1p

0
2], p0

1p
1
2, p0

1p
2
2, p1

1p
0
2, p1

1p
1
2, p1

1p
2
2, p2

1p
0
2, p2

1p
1
2, [p2

1p
2
2]

which in the leading case 36 = 22 · 32 gives

36 = 3 · 12 = 9 · 4 = 2 · 18 = 6 · 6 = 18 · 2 = 4 · 9 = 12 · 3

F (36, 2) = (2 + 1)(2 + 1) − 2 = 7
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while if order doesn’t count we have

36 = 3 · 12 = 9 · 4 = 2 · 18 = 6 · 6

f(36, 2) = Ceiling[ 1
2 · 7] = 4

The Mathematica commands
F[n–]:=Product[FactorInteger[n][[k]][[2]]+1,{k,1,Length[FactorInteger[n]]}]−2

f[n–]:=Ceiling[F[n]/2]

(which announce 0 when n is prime) permit one to tabulate results such as
those we just computed by hand. We have, for example, this short table of
bipartite factorization numbers:

n F (n, m) f(n, m)
4838398 6 3
4838399 0 0
4838400 262 131
4838401 2 1
4838402 6 3

where the number 4838400 = 210 ·33 ·52 ·7 was taken from the “Table of highly
factorable integers below 109 ” that appears in Canfield et al .7 Similarly

n F (n, m) f(n, m)
958003198 2 1
958003199 14 7
958003200 862 431
958003201 0 0
958003202 10 5

where 958003200 = 211 · 35 · 52 · 7 · 11 is the last entry in the Canfield table.

As we have seen, the theory of multiplicative partitions hinges on a subject
with a much longer history—the theory of additive partitions, as it relates to the
prime exponents. Which recalls to mind a problem that engaged the attention
of Richard Crandall and me for a few days exactly five years ago (Februrary,
2008). Let

p(n, m) = # m-term additive partitions of n

and define

P (n, m) = p(n, m)
p(n)

:
n∑

m=1

P (n, m) = 1

We were intrigued by the observation that when plotted (see the following
figure) P (n, m) resembles some distributions (Maxwell, Planck) of physical
importance, and sought asymptotic analytical approximations to P (n, m). It
was brought to Richard’s attention (by Carl Pomerance?) that the problem
has generatd a literature : see P. Erdös & J. Lehner, “The distribution of the
number of summands in the partitions of a positive integer,” Duke Math. J.
8, 335-345 (1941); G. Szekeres, “Some asymptotic formulae in the theory of
partitions (II),” Quarterly J. of Math. (Oxford) 4, 96-111 (1953).


